Pais: Argentina
Fecha: 28 de Octubre del 2016
Descubren el primer sensor de temperatura de plantas
Investigadores del CONICET y de la Fundación Instituto Leloir comprobaron que un receptor lumínico de los vegetales también actúa como "termómetro" e influye sobre su crecimiento y desarrollo. El hallazgo podría mejorar la productividad de cultivos. El doctor Jorge Casal, jefe del Laboratorio de Fisiología Molecular de Plantas del Instituto Leloir (FIL) e investigador superior del CONICET y de la UBA, con dos integrantes de su equipo que participaron del estudio publicado en Science, las doctora Martina Legris (izq.) y Cecilia Costigliolo. "Ya se habían identificado en plantas receptores de luz y de hormonas, pero nunca se había descubierto de manera inequívoca ningún sensor de temperatura", afirma el líder del hallazgo publicado en revista Science, el doctor Jorge Casal, investigador superior del CONICET y jefe del Laboratorio de Fisiología Molecular de Plantas de la Fundación Instituto Leloir. Estas estructuras, dispersas en partes como las hojas, el tallo y las raíces, funcionan como ojos que le "informan" al vegetal acerca de las variaciones de la luz ambiental a lo largo del día y de las estaciones. Pero ahora, de manera inesperada, Casal y su equipo descubrieron que un tipo de fitocromo (B) también registra o "sensa" la temperatura. "Es un resultado bastante sorprendente, porque uno no habría esperado que un receptor de la luz, conocido desde hace poco más de medio siglo, también lo fuera de la temperatura", señala el investigador. Es como si un detector lumínico también tuviera un termómetro incorporado. "Este sensor informa a la planta sobre si hace frío o calor, durante el día y en las distintas estaciones. A partir de esta información, se desencadenan reacciones moleculares que inducen su desarrollo y crecimiento cuando las condiciones climáticas son favorables", agrega Casal, quien también es vicedirector del Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA, CONICET-UBA). Con el objeto de confirmar que el fitocromo B también es un sensor de temperatura, Casal y sus colegas lo estudiaron in vitro como molécula aislada, luego dentro de una célula vegetal y, por último, en plantas sometidas a variaciones de luz y temperatura. "Los estudios in vitro nos permitieron mirar la estructura del fitocromo B a nivel molecular y percibir sus transformaciones a medida que se sometía de manera simultánea a variaciones de luz y de temperatura. Pudimos observar que esa molécula responde rápidamente y hace un balance entre ambas informaciones", indica Casal. El siguiente paso fue ver qué ocurría a nivel celular en plantas normales y otras con mutaciones genéticas cuyos receptores eran sensibles a la luz, pero no a la temperatura. Desde hace tiempo se sabía que las variaciones de luz modifican la distribución de los fitocromos en el núcleo de la célula. "Utilizando equipos de microscopia confocal, observamos que la temperatura también determinaba la concentración o dispersión de esos sensores en el núcleo de la célula. Y que el balance entre temperatura y luz era lo que determinaba esa distribución", añade. Por último, Casal y su grupo realizaron experimentos para estudiar el impacto de las variaciones ambientales sobre el funcionamiento de los fitocromos y el crecimiento y desarrollo de las plantas. Para ello, pusieran plantas normales y mutantes (con fitocromos incapaces de registrar la temperatura) en cubas. Y las evaluaron mediante un espectrofotómetro: un equipo que sirve para medir y registrar los cambios físicos y químicos del fitocromo B a medida que se alteran la luz y la temperatura "El análisis demostró que el fitocromo B también registra y mide temperatura y hace un balance entre esa información y la de la luz. Ese promedio de datos ponen o no a esa molécula en un estado activo o en reposo. Y eso se traduce en el desarrollo y crecimiento de las plantas", dice Casal. Los investigadores también armaron una base de datos con información de las plantas con fitocromos normales y mutantes creciendo en condiciones distintas de luz. "Con esta información, elaboramos un modelo matemático que nos permite averiguar cómo se va a comportar la planta tomando en cuenta si el fitocromo va a ser afectado por la temperatura o si va a ignorar su efecto. En un contexto de cambio climático, saber cómo las plantas leen la información térmica brinda una herramienta que permite pensar en ampliar el rango de temperatura propicio para distintos cultivos. "En estos momentos, estamos estudiando distintos genotipos de maíz y analizaremos su respuesta combinada a temperatura y luz en articulación con estudios genéticos del fitocromo B", anuncia Casal.
Argentina |
Brasil |
Chile |
Colombia |
Costa Rica |
---|---|---|---|---|
El Salvador |
España |
Estados Unidos |
Holanda |
Honduras |
Israel |
México |
Nicaragua |
Perú |
RepublicaDominicana |
Regional |