The Role of Research and Technology in Agricultural Innovation Systems

International Conference on Agricultural Innovation Systems 30 May-1 June 2012

Expanding Global Agendas and Increasing Demands on Agricultural Research

- Global food security under increasing land and water constraints
- Provision of ecosystem services and eco-efficiency of farming systems
- Adaptation and mitigation to climate change
- Agroecological intensification of smallholder agriculture and poverty

Changing Research Methods and Technology Design

- Production systems research
- Integrating ecological science
- Place-based research methods
- Research consortia
- Scaling up integrated into research design
- Flexible institutional arrangements

Agricultural Research within an Agricultural InnovationSystem

- Demand responsiveness rather than supply driven
- Flexible institutional arrangements and improved connectivity
- Shifting division of labor between public and private sector
- Adapting to a dynamic agricultural sector and organizational change management

Agricultural Research within the Three Worlds of Agriculture

Urban

- Agroprocessing and agricultural input industry well developed
- Differentiated demand and large scale supply of agricultural products
- Organizational matrix of trade, farmer, and agroprocessing associations

Research responds to agroprocessing and input firms linking supply/demand

Agricultural Research within the Three Worlds of Agriculture

Agrarian

- Large, undifferentiated smallholder sector
- Unintegrated output markets and incomplete input and service markets
- Nascent agroindustrial sector with large transaction costs in supply and input delivery
- Research dependent on public sector

Research responds to farmers demand but with lack of effective articulation

Agricultural Research within the Three Worlds of Agriculture

Transitional Economy

- Growing urban demand and differentiating agricultural sector
- Lagging agricultural regions dominated by semi-subsistence smallholders
- Dynamic commercial and lagging commodity sectors

Evolving public-private division of labor between commercial and lagging sectors

Comparison of research systems in Sub-Saharan Africa, India, and the United States around 2000

	Sub-Saharan Africa	India	United States
Arable and permanent crop area (million hectares)	147	160	175
Number of public agricultural research agencies	390	120	51
Number of full-time equivalent scientists	12,224	8,100	9,368
Percentage of scientists with PhD	25	63	100
Annual spending on agric R&D (million 1999 international dollars)	1,085	1,860	3,465
Spending per scientist (thousand 1999 international dollars)	89	230	370
Sources: FAO (2006a), Pal and Byerlee (2006); Pardey and others (2007).			

Articulating the Demand and Supply of Agricultural Reseach

Supply

- Lag time in investment& technology release
- Scope & priorities
- Fixed disciplinary mix
- Integrating science

Demand

- Diffuse farmer voice and organization
- Farmer heterogeneity
- Asymmetric information
- Undeveloped markets

The Conundrum of Demand-Driven Research

 Market driven: efficient agricultural markets; agroprocessing and agricultural inputs as locus of market power

 Farmer driven: inefficient markets; farmers as focus of public sector research

Market Driven

- Context: quality price differentials, competitive input markets, commercial orientation of farmers
- Approaches:
 - -Public-Private Partnerships
 - -Research Clusters
 - -Innovation Funds

Farmer Driven

- Context: farm heterogeneity, semisubsistence, inefficient input and output markets; public sector research
- Approaches
 - -Farmers in research governance
 - -Competitive grants & farmer selection
 - -Decentralization and systematic adaptive research

Integrating Supply and Demand for New Technology

Innovation platforms (value chains)

- Facilitated approaches with external actors
- Combining technical and organizational innovation
- Funding for organizational transaction costs

Global Public and Private Agricultural R&D Investments, 2000

Region	Expenditure (Million US \$)	Percent Public Expenditure
Asia-Pacific	8,186	91.9
Latin America	2,578	95.2
Sub-Saharan Africa	1,486	98.3
Developing Country Sub-Total	13,682	93.7
High Income Countries	22,277	64.0

Source: Pardey, et al, 2006

Modalities of Public-Private Partnerships

- Agroprocessing: collaborative
- Pre-competitive ensuring commodity supply: finance
- Input research: competitive
- Crop and natural resource management: devolved to public sector

Managing Organizational Change

Balancing programmatic rigidity within a changing agricultural sector

- Structural rigidity
 - -Critical mass and program continuity
 - -Problem scope and priorities
 - -Program and disciplinary specificity
- Dynamic agricultural sector
 - -Changing policy and gov't priorities
 - -New scientific opportunities
 - -Growth and changing market contexts

Trade-Offs in Managing Change

- Managing internal program change vs managing external connectivity
- Balancing market opportunities with public policy objectives
- Balancing upstream and adaptive research capacity
- Managing international, regional, & national (university) research linkages

Managing Downstream Processes and Programmatic Articulation

Innovation as Process

 Intersecting technical, organizational and market innovations

Programmatic Articulation

 Technology design, adaptive research, and dissemination

Agricultural Research and Systemic Change in an AIS

Agrarian Economies

- Facilitated: funds flow, capacity, and neutrality
- Adaptive research capacity, market efficiency, farmer organization

Urban Economies

- Unfacilitated: innovation funds
- Clusters in agr value chains

Organization of the Rest of the Session

- Building demand articulation and institutional interfaces
- Consortia and R&D partnerships in Chile
- Change management
- AIS implementation in Uruguay
- IAR4D and agricultural innovation in CORAF